
Regional Readout latency simulation for
upgraded ATLAS Inner Detector strips

G. Crone

March 6, 2012

1 Introduction

In order for the Region of Interest (RoI) driven level 1 track trigger to work,
the data from the RoI must be retrieved and processed within the maximum
level 1 latency supported by the detectors. This is currently expected to be
∼ 15µs determined by the muon system. If we allow 5µs for the Level 0
decision and 5µs for the L1 track processing, that leaves ∼ 5µs to get the
RoI data from the front end chips to the L1 track processor. To investigate
readout schemes that allow the RoI data to be read in ∼ 5µs a simple discrete
event simulation has been written.

The RoI or ‘Regional Readout Request’ (R3) Data latency simulation is
a python script which uses the SimPy discrete event simulation package for
event scheduling and ROOT for histogramming.

1.1 SimPy

The SimPy package [1] is fairly simple to use. Actions can be scheduled for
a specific time or for when a ’Resource’ becomes available. A ’Resource’ can
be blocked for a specific time by one action, making it unavailable to other
actions. This makes it easy to model contention for a real resource such as
the inter chip links on a hybrid.

A SimPy ’Resource’ can be allocated on a first come first served basis
or according to the priority of the requester. This allows us to model the
situation where R3 packets are given higher priority than L1 packets.

2 The simulation script

The simulation script currently represents a ’vertical slice’ from the L0/L1
trigger system to a single Si detector hybrid. Each hybrid has its own ded-
icated lines to the end of stave / GBT so there is no contention among the
hybrids on a stave.

1

Entries 744439
Mean 1718.322
RMS 1003.563

0 1000 2000 30000

100

200

300
Entries 744439
Mean 1718.322
RMS 1003.563

Beam bucket with L0 Accept

Figure 1: Distribution of events among filled beam buckets

2.1 Event generation

Level0 Accepts are generated randomly among the filled bunch crossings1 at
a rate determined by the variable option.l0Rate (the full list of script options
is given in Appendix A). Figure 1 shows the distribution of events among
filled beam buckets and figure 2 shows the gap between L0 accepts in cycles
of the 40MHz LHC clock with a requested L0 rate of 300kHz.

A random subset of the L0 Accepts (determined by option.r3percent) are
selected for having an R3 involving our modelled hybrid. An independent
random subset of L0As are selected for having an Level1 Accept at a rate
determined by option.l1Rate.

2.2 Event process

For each L0A generated, the following steps are taken.

• Delay for L0A latency (fixed)

• If marked for R3

– Delay for fibre transmit latency

– Start hybrid/stave transfer

– Wait for it to complete

– Delay for fibre transmit latency

• If no R3 - Delay for average R3 latency2

1The bunch crossing structure is modelled in bxgenerator.py which keeps track of which
clock cycle contains the next filled bunch. This uses the LHC bunch structure described
in [2]

2Before the 1st R3 is complete this is a fixed time based on number of chips per HCC
and link speed

2

Entries 744439
Mean 133.767
RMS 132.128

0 200 400 600 800

1

10

210

310

410 Entries 744439
Mean 133.767
RMS 132.128

Gap between L0As in LHC clock cycles

Figure 2: Number of 40MHz clock cycles between L0 Accepts

• If marked for L1A

– Delay for fibre transmit latency

– Start hybrid/stave transfer

– Wait for it to complete

– Delay for fibre transmit latency

2.3 How many data packets come from each chip

Earlier studies based on athena simulations of the upgrade geometry have
produced estimates of the the number of data packets for R3 and L1 data.
To simulate the correct number of data packets, for each L1A each chip uses

Entries 4032000
Mean 1.187
RMS 0.846

0 2 4 6 8

310

410

510

610

Entries 4032000
Mean 1.187
RMS 0.846

L5 packets per chip 3 clusters per packet, max width max width 4

Entries 185710
Mean 1.155
RMS 1.243

0 2 4 6 8

210

310

410

510 Entries 185710
Mean 1.155
RMS 1.243

ABC L1 packet count0

Figure 3: Number of L1 packets for 200 pileup from athena simulation (left)
and discrete event simulation (right).

the python expovariate random number generator with the lambda set to
1/the mean L1 packet size.

To simulate the correct number of data packets for R3 data, each chip
decides whether or not it has a packet to send based on a uniform random

3

number generator with the correct fraction of empty chips taken from the
R3 packet size histogram.

2.4 ABC to ABC/HCC data transfer

���
��������

��	�

�������

Figure 4: Data links within ABC chips.

The transfer of data between chips is complicated in that there are three
sources of data, R3 data, L1 data and data from the relay buffer from the
next chip in the line (as shown in Figure 4). This is modelled using priority
queue Resource objects and adjusting the priority of different packet transfers
dynamically.

�����������	

�������������	

���
��� ��� ��� ��� ��� ��� ��� ��� ��� ���

Figure 5: Data links between ABC chips, HCC and stave. ABC chips are in
2 groups of 5.

Depending on its position in the chain, each chip will prioritise data from
the relay buffer over its own data for a different number of packets.

���
��������

������	�

�������

�����	�

Figure 6: Data links within ABC chips.

An alternative scheme where the L1A data and the R3 data are sent on
separate dedicated links is also modeled (Figure 6).

2.5 HCC to end of stave data transfer

The transfer of data along the stave from the HCC is modelled using one
or two ’Resource’ objects depending on whether the link is logically shared

4

between R3 and L1 data or split into two dedicated links. The ’Resource’
objects are used with priorities with the R3 having greater priority than L1
so in the case of a shared link, the HCC will send R3 data before L1.

3 Results

Except where stated, the following results are all for runs with the basic
parameters:

• Pileup 200

• 25ns bunch spacing with simple deadtime 2 (which is equivalent to 50ns
with no simple deadtime)

• L0 rate 300kHz

• L1 rate 75kHz

• R3 rate 3kHz

• data packet size 60bits

• 5 ABC chips per channel to HCC

3.1 R3 data to HCC

The number of packets waiting for access to the data link out of a chip can be
seen from the length of the Resource queue. An example is shown in figure
7.

Entries 1192038
Mean 0.230
RMS 0.638

0 10 20 30
10

210

310

410

510

610 Entries 1192038
Mean 0.230
RMS 0.638

Resource queue length0

Entries 1244012
Mean 0.753
RMS 1.575

Entries 1244012
Mean 0.753
RMS 1.575
Entries 29527
Mean 0.000
RMS 0.000

Entries 29527
Mean 0.000
RMS 0.000
Entries 29997
Mean 0.001
RMS 0.022

Entries 29997
Mean 0.001
RMS 0.022

 shared 160Mb/s link

 shared 80Mb/s link

dedicated 80Mb/s link

dedicated 40Mb/s link

Figure 7: Resource Queue length for the ABC chip closest to the HCC

5

3.2 R3 data to end of stave

The time taken to transfer R3 data from chip to end of stave for 3 scenarios
is shown in figure 8. A 160Mb/s link shared between L1 accepted data and
R3 data is usually faster than a dedicated 80Mb/s link but has longer tails
so is sometimes longer.

Entries 7490
Mean 5713.035
RMS 2129.182

time ns
10000 20000 30000

1

10

210

310

Entries 7490
Mean 5713.035
RMS 2129.182

R3 data ABC to stave xfer

Entries 7535
Mean 3733.763
RMS 602.361

Entries 7535
Mean 3733.763
RMS 602.361
Entries 7464
Mean 4525.867
RMS 348.919

Entries 7464
Mean 4525.867
RMS 348.919

 shared 80Mb/s link

 shared 160Mb/s link

dedicated 80Mb/s link

Figure 8: time taken to get R3 data from ABC chips to the end of stave

Bandwidth Mb/s % R3 data received in
chip stave < 4µs < 4.5µs < 5µs < 5.5µs

40+40 80+80 0 0 0 0.0273
80+80 80+80 0.0545 0.695 0.695 4.81
80+80 160+160 2.62 98 98.3 98.6
80+80 shared 160 2.22 64.9 98.5 98.8
80+80 shared 320 26.4 98.3 98.9 99.3

shared 160 shared 160 71.7 92.7 96.6 98.5
shared 160 shared 240 94.6 97.4 98.8 99.4
shared 160 shared 320 96.7 98.5 99.1 99.5
shared 80 shared 160 1.74 51.4 56.5 62.1

Table 1: Amount of R3 data received in a given time for various bandwidth
sharing scenarios

The fraction of R3 data that reaches the end of stave within a given time
for various scenarios is shown in table 1. For each of the chip bandwidths
given it should be remembered that there are 2 groups of 5 chips feeding
in to an HCC so the aggregate bandwidth is double the number in the 1st
column.

Having dedicated links for R3 and L1 data end to end allows us to use
a different data format for R3 packets. If we use dedicated links and reduce
the R3 data packet size to 40 bits we get the results shown in table 2.

6

Bandwidth Mb/s % R3 data received in
chip stave < 4µs < 4.5µs < 5µs < 5.5µs

80+80 80+80 30.3 61.2 88.3 99

Table 2: Amount of R3 data received in a given time with 40 bit R3 data
packets

Just for a comparison, table 3 shows the amount of data received in a
given time when all 10 ABC chips are readout serially by the HCC.

Bandwidth Mb/s % R3 data received in
chip stave < 4µs < 6µs < 8µs < 10µs

80+80 shared 160 0 0.0135 18.5 97.3
shared 160 shared 160 0 16.9 78.4 92.2

Table 3: Amount of R3 data received in a given time for various bandwidth
sharing scenarios with 10 chips per HCC connection

3.3 What if our assumptions about input L0/RoI rates
are wrong?

Just using the scenario with 2 160Mb/s shared chip links and a shared
160Mb/s stave link, table 4 shows the effect of different L0, L1 and R3
rates.

Rate kHz % R3 data received
L0 L1 R3 in < 5µs in < 5.5µs in < 6µs in < 6.5µs
300 75 3 95.4 97.9 99 99.5
300 75 15 92.9 96.4 98.2 99.2
300 75 30 89.6 93.7 96.5 98.1
500 100 5 93.6 97 98.5 99.2
500 100 25 88.8 93.3 96.3 97.9
500 100 50 82.6 88.3 92.8 95.5

Table 4: Amount of R3 data received in a given time for various input rate
scenarios with 5 chips per HCC connection using 160Mb/s shared links on
hybrid and stave.

References

[1] The SimPy homepage http://simpy.sourceforge.net/index.html

[2] S.Ask et al,The ATLAS central level-1 trigger logic and TTC system

7

A r3sim.py command line

./r3sim.py --help

Usage: r3sim.py [options]

Options:

-h, --help show this help message and exit

-p PILEUP, --pileup=PILEUP

pileup to determine event size distribution (default

200)

-n SIMNAME, --simName=SIMNAME

simulation name, used in constructing output file name

-t RUNTIME, --time=RUNTIME

amount of time to simulate in seconds (default 0.025)

-r NREPORTS, --nReports=NREPORTS

Number of progress reports to issue (default 10)

-d, --dedicatedChipLink

Use separate channels for R3 and L1 data between chips

--sharedChipLink Use single shared channel for R3 and L1 data between

chips (default True)

--dedicatedStaveLink Use separate channels for R3 and L1 data along stave

--sharedStaveLink Use single shared channel for R3 and L1 data along

stave (default True)

--l0Rate=L0RATE Level 0 accept rate in Hz (default 300000)

--l1Rate=L1RATE Level 1 accept rate in Hz (default 75000)

-b BXSPACING, --bxSpacing=BXSPACING

Bunch crossing spacing in ns (default 25)

--linkSpeed=LINKSPEED

Inter chip link speed in Mb/s (default 160)

--staveLinkSpeed=STAVELINKSPEED

Stave link speed in Mb/s (default 320)

--r3LinkShare=R3LINKSHARE

Share of inter chip link speed dedicated to R3

(default 0.5)

--r3packetsize=R3PACKETSIZE

R3 packet size in bits (default 40)

--l1packetsize=L1PACKETSIZE

L1 packet size in bits (default 60)

--r3percent=R3PERCENT

percentage of time one hybrid is in RoI (default 1)

--simpleDeadTime=SIMPLEDEADTIME

Minimum number of BX between L0 Accepts (default 3)

--seed=SEED Seed for random number generator

--chipsPerHCC=CHIPSPERHCC

Number of chips per HCC connection (default 10)

--l0Latency=L0LATENCY

Time taken to make the level 0 Accept decision in ns

(default 2400)

--outdir=OUTDIR output directory (default /tmp)

8

