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Derivatives and rates of change  
 

For physical systems that are changing in some way, for example with time or through space, it 
is very natural to ask how rapid this change is.  The appropriate mathematical construct is the 
derivative.  One simple way of visualizing its meaning is that the derivative of a function at a 
given point gives the slope of a graph of that function.  You know how to calculate derivatives 
analytically by algebraic manipulation; but how can we calculate the derivative using only the 
numerical values of the function?  For example, suppose we were given the positions of a 
particle at some sequence of times; how should we go about finding the particle's speed from 
this information? 

In this exercise, you will study two so-called finite-difference approximations to the rate of 
change of a function )(xf .  These are 
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In the limit that 0→xδ , both these finite-difference approximations reduce to the derivative.  
However in a digital computer, how small should xδ be for the numerical calculation to be within 
some tolerance of the analytical value?  Are both approximations equally accurate?  How far 
can we trust them?  

To test this, create a spreadsheet which evaluates 1∆  and 2∆  for two different functions:  

• 4( ) ( )f x x a= + , and initially choose x = 2.5, a = 1, 

• ( ) sin( )f x x=   with x = 0.8. 

Your spreadsheet should calculate 1∆  and 2∆  for both functions, using a range of successively 
smaller differences ,xδ  starting from 1.0, then reducing by powers of 10 as far as 10-7. 

In these examples you can, of course, calculate the true value of the derivative analytically.  
Your spreadsheet  

• should evaluate the difference between the approximate expressions 1∆  and 2∆  and 
the exact derivative in each case.   

• test whether the differences are smaller than a tolerance of 10-4.  You can do this using 
Excel's IF and ABS functions.  Look up the summaries of the IF and ABS functions 
provided by the Excel’s function wizard if you are not sure.   

The exact layout of the spreadsheet is up to you. The table below shows a suggestion for the 
first few rows.  
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function (x+a)4       
x = 2.5       
a = 1       
Target error 0.0001       
derivative 171.5       
        

dx ? 1[(x+a)4] Abs(Difference) Converged?  ? 2[(x+a)4] Abs(Difference) Converged 
1 260 88.5 Not Converged  185.5 14 Not Converged 

0.1 178.991 7.491 Not Converged  171.64 0.14 Not Converged 
0.01 172.236401 0.736401 Not Converged  171.5014 0.0014 Not Converged 

You should see from your table which approximation converges more quickly.  To make this 
more quantitative, you obviously should plot a graph showing the differences for 1∆  and 2∆  as 
a function of xδ .  Because of the large range in the values of xδ - seven orders of magnitude - 
you will need to take logarithms to base 10 of both quantities; Abs(Difference) and xδ .  Fit a 
trendline to the data points for the five largest values of xδ .  (The mathematically inclined 
student should be able to show that the slopes of the lines are expected to have approximately 
the values given by the trendline fit.) 

For the very smallest values of xδ the accuracy of the finite-difference approximations may start 
to get worse.  Try calculating the quantities for 8 910 ,10xδ − −= , or even smaller values.  How 
do you account for the fact that the numerical approximation to the derivative appears to get 
worse as 0xδ →  whereas the analytical one improves?    

Save the spreadsheet as “username-derivatives.xls”.  


