References

1

Marco Cirelli, Guido Marandella, Alessandro Strumia, and Francesco Vissani. Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments. Nucl. Phys., B708:215–267, 2005. arXiv:hep-ph/0403158, doi:10.1016/j.nuclphysb.2004.11.056.

2

A. Donini, P. Hernandez, J. Lopez-Pavon, and M. Maltoni. Minimal models with light sterile neutrinos. JHEP, 1107:105, 2011. arXiv:1106.0064, doi:10.1007/JHEP07(2011)105.

3

Anupama Atre, Tao Han, Silvia Pascoli, and Bin Zhang. The Search for Heavy Majorana Neutrinos. JHEP, 0905:030, 2009. arXiv:0901.3589, doi:10.1088/1126-6708/2009/05/030.

4

Frank F. Deppisch, P. S. Bhupal Dev, and Apostolos Pilaftsis. Neutrinos and Collider Physics. New J. Phys., 17(7):075019, 2015. arXiv:1502.06541, doi:10.1088/1367-2630/17/7/075019.

5

André de Gouvea and Andrew Kobach. Global Constraints on a Heavy Neutrino. Phys. Rev., D93(3):033005, 2016. arXiv:1511.00683, doi:10.1103/PhysRevD.93.033005.

6

Marcin Chrzaszcz, Marco Drewes, Tomás E. Gonzalo, Julia Harz, Suraj Krishnamurthy, and Christoph Weniger. A frequentist analysis of three right-handed neutrinos with GAMBIT. Eur. Phys. J. C, 80(6):569, 2020. arXiv:1908.02302, doi:10.1140/epjc/s10052-020-8073-9.

7

Georges Aad and others. Search for heavy neutral leptons in decays of $W$ bosons produced in 13 TeV $pp$ collisions using prompt and displaced signatures with the ATLAS detector. JHEP, 10:265, 2019. arXiv:1905.09787, doi:10.1007/JHEP10(2019)265.

8

Albert M Sirunyan and others. Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at $\sqrt s =$ 13 TeV. Phys. Rev. Lett., 120(22):221801, 2018. arXiv:1802.02965, doi:10.1103/PhysRevLett.120.221801.

9

Georges Aad and others. Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at $ \sqrt s=8 $ TeV. JHEP, 07:162, 2015. arXiv:1506.06020, doi:10.1007/JHEP07(2015)162.

10

Albert M Sirunyan and others. Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at $ \sqrt s=13 $ TeV. JHEP, 01:122, 2019. arXiv:1806.10905, doi:10.1007/JHEP01(2019)122.

11

A. Abada and others. FCC-hh: The Hadron Collider. Eur. Phys. J. ST, 228(4):755–1107, 2019. doi:10.1140/epjst/e2019-900087-0.

12

Silvia Pascoli, Richard Ruiz, and Cedric Weiland. Heavy neutrinos with dynamic jet vetoes: multilepton searches at $\sqrt s=14$ , 27, and 100 TeV. JHEP, 06:049, 2019. arXiv:1812.08750, doi:10.1007/JHEP06(2019)049.

13

Arindam Das, P. S. Bhupal Dev, and C. S. Kim. Constraining Sterile Neutrinos from Precision Higgs Data. Phys. Rev., D95(11):115013, 2017. arXiv:1704.00880, doi:10.1103/PhysRevD.95.115013.

14

Daniel Dercks, Herbert K. Dreiner, Martin Hirsch, and Zeren Simon Wang. Long-Lived Fermions at AL3X. Phys. Rev., D99(5):055020, 2019. arXiv:1811.01995, doi:10.1103/PhysRevD.99.055020.

15

Vladimir V. Gligorov, Simon Knapen, Michele Papucci, and Dean J. Robinson. Searching for Long-lived Particles: A Compact Detector for Exotics at LHCb. Phys. Rev., D97(1):015023, 2018. arXiv:1708.09395, doi:10.1103/PhysRevD.97.015023.

16

Jonathan L. Feng, Iftah Galon, Felix Kling, and Sebastian Trojanowski. ForwArd Search ExpeRiment at the LHC. Phys. Rev., D97(3):035001, 2018. arXiv:1708.09389, doi:10.1103/PhysRevD.97.035001.

17

John Paul Chou, David Curtin, and H. J. Lubatti. New Detectors to Explore the Lifetime Frontier. Phys. Lett., B767:29–36, 2017. arXiv:1606.06298, doi:10.1016/j.physletb.2017.01.043.

18

Mariana Frank, Marc de Montigny, Pierre-Philippe A. Ouimet, James Pinfold, Ameir Shaa, and Michael Staelens. Searching for Heavy Neutrinos with the MoEDAL-MAPP Detector at the LHC. Phys. Lett. B, 802:135204, 2020. arXiv:1909.05216, doi:10.1016/j.physletb.2020.135204.

19

Felix Kling and Sebastian Trojanowski. Heavy Neutral Leptons at FASER. Phys. Rev., D97(9):095016, 2018. arXiv:1801.08947, doi:10.1103/PhysRevD.97.095016.

20

David Curtin and others. Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case. Rept. Prog. Phys., 82(11):116201, 2019. arXiv:1806.07396, doi:10.1088/1361-6633/ab28d6.

21

O. Adriani and others. Search for isosinglet neutral heavy leptons in Z0 decays. Phys. Lett., B295:371–382, 1992. doi:10.1016/0370-2693(92)91579-X.

22

P. Achard and others. Search for heavy isosinglet neutrino in $e^+ e^-$ annihilation at LEP. Phys. Lett. B, 517:67–74, 2001. arXiv:hep-ex/0107014, doi:10.1016/S0370-2693(01)00993-5.

23

P. Abreu and others. Search for neutral heavy leptons produced in Z decays. Z. Phys., C74:57–71, 1997. [Erratum: Z. Phys.C75,580(1997)]. doi:10.1007/s002880050370.

24

Shankha Banerjee, P. S. Bhupal Dev, Alejandro Ibarra, Tanumoy Mandal, and Manimala Mitra. Prospects of Heavy Neutrino Searches at Future Lepton Colliders. Phys. Rev. D, 92:075002, 2015. arXiv:1503.05491, doi:10.1103/PhysRevD.92.075002.

25

Alain Blondel, E. Graverini, N. Serra, and M. Shaposhnikov. Search for Heavy Right Handed Neutrinos at the FCC-ee. Nucl. Part. Phys. Proc., 273-275:1883–1890, 2016. arXiv:1411.5230, doi:10.1016/j.nuclphysbps.2015.09.304.

26

P. Hernández, J. Jones-Pérez, and O. Suarez-Navarro. Majorana vs Pseudo-Dirac Neutrinos at the ILC. Eur. Phys. J., C79(3):220, 2019. arXiv:1810.07210, doi:10.1140/epjc/s10052-019-6728-1.

27

Subhadeep Mondal and Santosh Kumar Rai. Probing the Heavy Neutrinos of Inverse Seesaw Model at the LHeC. Phys. Rev., D94(3):033008, 2016. arXiv:1605.04508, doi:10.1103/PhysRevD.94.033008.

28

Arindam Das, Sudip Jana, Sanjoy Mandal, and S. Nandi. Probing right handed neutrinos at the LHeC and lepton colliders using fat jet signatures. Phys. Rev., D99(5):055030, 2019. arXiv:1811.04291, doi:10.1103/PhysRevD.99.055030.

29

Stefan Antusch, Oliver Fischer, and A. Hammad. Lepton-Trijet and Displaced Vertex Searches for Heavy Neutrinos at Future Electron-Proton Colliders. JHEP, 03:110, 2020. arXiv:1908.02852, doi:10.1007/JHEP03(2020)110.

30

Stefan Antusch, Eros Cazzato, and Oliver Fischer. Sterile neutrino searches at future $e^-e^+$, $pp$, and $e^-p$ colliders. Int. J. Mod. Phys., A32(14):1750078, 2017. arXiv:1612.02728, doi:10.1142/S0217751X17500786.

31

Simon Bray, Jae Sik Lee, and Apostolos Pilaftsis. Resonant CP violation due to heavy neutrinos at the LHC. Nucl. Phys., B786:95–118, 2007. arXiv:hep-ph/0702294, doi:10.1016/j.nuclphysb.2007.07.002.

32

P. S. Bhupal Dev, Apostolos Pilaftsis, and Un-Ki Yang. New Production Mechanism for Heavy Neutrinos at the LHC. Phys.Rev.Lett., 112(8):081801, 2014. arXiv:1308.2209, doi:10.1103/PhysRevLett.112.081801.

33

Apostolos Pilaftsis. Resonant CP violation induced by particle mixing in transition amplitudes. Nucl.Phys., B504:61–107, 1997. arXiv:hep-ph/9702393, doi:10.1016/S0550-3213(97)00469-0.

34

Juan Carlos Helo, Sergey Kovalenko, and Ivan Schmidt. Sterile neutrinos in lepton number and lepton flavor violating decays. Nucl. Phys., B853:80–104, 2011. arXiv:1005.1607, doi:10.1016/j.nuclphysb.2011.07.020.

35

Marco Drewes, Juraj Klarić, and Philipp Klose. On Lepton Number Violation in Heavy Neutrino Decays at Colliders. JHEP, 11:032, 2019. [JHEP19,032(2020)]. arXiv:1907.13034, doi:10.1007/JHEP11(2019)032.

36

M. Aoki, M. Blecher, D. A. Bryman, S. Chen, M. Ding, L. Doria, P. Gumplinger, C. Hurst, A. Hussein, Y. Igarashi, N. Ito, S. H. Kettell, L. Kurchaninov, L. Littenberg, C. Malbrunot, T. Numao, R. Poutissou, A. Sher, T. Sullivan, D. Vavilov, K. Yamada, and M. Yoshida. Search for massive neutrinos in the decay $\ensuremath \pi \ensuremath \rightarrow e\ensuremath \nu $. Phys. Rev. D, 84:052002, Sep 2011. URL: https://link.aps.org/doi/10.1103/PhysRevD.84.052002, doi:10.1103/PhysRevD.84.052002.

37

A. Aguilar-Arevalo and others. Improved search for heavy neutrinos in the decay $\pi \rightarrow e\nu $. Phys. Rev., D97(7):072012, 2018. arXiv:1712.03275, doi:10.1103/PhysRevD.97.072012.

38

D.A. Bryman and R. Shrock. Improved Constraints on Sterile Neutrinos in the MeV to GeV Mass Range. Phys. Rev. D, 100(5):053006, 2019. arXiv:1904.06787, doi:10.1103/PhysRevD.100.053006.

39

D.A. Bryman and R. Shrock. Constraints on Sterile Neutrinos in the MeV to GeV Mass Range. Phys. Rev. D, 100:073011, 2019. arXiv:1909.11198, doi:10.1103/PhysRevD.100.073011.

40

Eduardo Cortina Gil and others. Search for heavy neutral lepton production in $K^+$ decays. Phys. Lett., B778:137–145, 2018. arXiv:1712.00297, doi:10.1016/j.physletb.2018.01.031.

41

Marco Drewes, Jan Hajer, Juraj Klaric, and Gaia Lanfranchi. NA62 sensitivity to heavy neutral leptons in the low scale seesaw model. JHEP, 07:105, 2018. arXiv:1801.04207, doi:10.1007/JHEP07(2018)105.

42

Asmaa Abada, Damir Becirevic, Olcyr Sumensari, Cedric Weiland, and Renata Zukanovich Funchal. Sterile neutrinos facing kaon physics experiments. Phys. Rev., D95(7):075023, 2017. arXiv:1612.04737, doi:10.1103/PhysRevD.95.075023.

43

A. Abashian and others. The Belle Detector. Nucl. Instrum. Meth., A479:117–232, 2002. doi:10.1016/S0168-9002(01)02013-7.

44

D. Liventsev and others. Search for heavy neutrinos at Belle. Phys. Rev., D87(7):071102, 2013. [Erratum: Phys. Rev.D95,no.9,099903(2017)]. arXiv:1301.1105, doi:10.1103/PhysRevD.95.099903, 10.1103/PhysRevD.87.071102.

45

J. Badier and others. Mass and Lifetime Limits on New Longlived Particles in 300-GeV/$c \pi ^-$ Interactions. Z. Phys., C31:21, 1986. doi:10.1007/BF01559588.

46

F. Bergsma and others. A Search for Decays of Heavy Neutrinos in the Mass Range 0.5-GeV to 2.8-GeV. Phys. Lett., 166B:473–478, 1986. doi:10.1016/0370-2693(86)91601-1.

47

P. Vilain and others. Search for heavy isosinglet neutrinos. Phys. Lett., B343:453–458, 1995. [Phys. Lett.B351,387(1995)]. doi:10.1016/0370-2693(94)00440-I, 10.1016/0370-2693(94)01422-9.

48

G. Bernardi and others. FURTHER LIMITS ON HEAVY NEUTRINO COUPLINGS. Phys. Lett., B203:332–334, 1988. doi:10.1016/0370-2693(88)90563-1.

49

S. A. Baranov and others. Search for heavy neutrinos at the IHEP-JINR neutrino detector. Phys. Lett., B302:336–340, 1993. doi:10.1016/0370-2693(93)90405-7.

50

K. Abe and others. Search for heavy neutrinos with the T2K near detector ND280. Phys. Rev. D, 100(5):052006, 2019. arXiv:1902.07598, doi:10.1103/PhysRevD.100.052006.

51

Igor Krasnov. DUNE prospects in the search for sterile neutrinos. Phys. Rev. D, 100(7):075023, 2019. arXiv:1902.06099, doi:10.1103/PhysRevD.100.075023.

52

Peter Ballett, Tommaso Boschi, and Silvia Pascoli. Heavy Neutral Leptons from low-scale seesaws at the DUNE Near Detector. JHEP, 03:111, 2020. arXiv:1905.00284, doi:10.1007/JHEP03(2020)111.

53

Sergey Alekhin and others. A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case. Rept. Prog. Phys., 79(12):124201, 2016. arXiv:1504.04855, doi:10.1088/0034-4885/79/12/124201.

54

C. Ahdida and others. Sensitivity of the SHiP experiment to Heavy Neutral Leptons. JHEP, 04:077, 2019. arXiv:1811.00930, doi:10.1007/JHEP04(2019)077.

55

Sergey Kovalenko, Zhun Lu, and Ivan Schmidt. Lepton Number Violating Processes Mediated by Majorana Neutrinos at Hadron Colliders. Phys.Rev., D80:073014, 2009. arXiv:0907.2533, doi:10.1103/PhysRevD.80.073014.

56

Asmaa Abada, Valentina De Romeri, Michele Lucente, Ana M. Teixeira, and Takashi Toma. Effective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays. JHEP, 02:169, 2018. arXiv:1712.03984, doi:10.1007/JHEP02(2018)169.

57

Medina Ablikim and others. Search for heavy Majorana neutrino in lepton number violating decays of $D\to K \pi e^+ e^+$. Phys. Rev., D99(11):112002, 2019. arXiv:1902.02450, doi:10.1103/PhysRevD.99.112002.

58

Eung Jin Chun, Arindam Das, Sanjoy Mandal, Manimala Mitra, and Nita Sinha. Sensitivity of Lepton Number Violating Meson Decays in Different Experiments. Phys. Rev. D, 100(9):095022, 2019. arXiv:1908.09562, doi:10.1103/PhysRevD.100.095022.

59

R. E. Shrock. New Tests For, and Bounds On, Neutrino Masses and Lepton Mixing. Phys.Lett., B96:159, 1980. doi:10.1016/0370-2693(80)90235-X.

60

K. H. Hiddemann, H. Daniel, and O. Schwentker. Limits on neutrino masses from the tritium beta spectrum. J. Phys., G21:639–650, 1995. doi:10.1088/0954-3899/21/5/008.

61

Christine Kraus, Andrej Singer, Kathrin Valerius, and Christian Weinheimer. Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment. Eur. Phys. J., C73(2):2323, 2013. arXiv:1210.4194, doi:10.1140/epjc/s10052-013-2323-z.

62

A. I. Belesev, A. I. Berlev, E. V. Geraskin, A. A. Golubev, N. A. Likhovid, A. A. Nozik, V. S. Pantuev, V. I. Parfenov, and A. K. Skasyrskaya. The search for an additional neutrino mass eigenstate in the 2–100 eV region from ‘Troitsk nu-mass’ data: a detailed analysis. J. Phys., G41:015001, 2014. arXiv:1307.5687, doi:10.1088/0954-3899/41/1/015001.

63

J. N. Abdurashitov and others. First measeurements in search for keV-sterile neutrino in tritium beta-decay by Troitsk nu-mass experiment. Pisma Zh. Eksp. Teor. Fiz., 105(12):723–724, 2017. [JETP Lett.105,no.12,753(2017)]. arXiv:1703.10779, doi:10.1134/S0021364017120013.

64

F. P. Calaprice and D. J. Millener. Heavy neutrinos and the beta spectra of $^35\mathrm S$, $^18\mathrm F$, and $^19\mathrm Ne$. Phys. Rev. C, 27:1175–1181, Mar 1983. URL: https://link.aps.org/doi/10.1103/PhysRevC.27.1175, doi:10.1103/PhysRevC.27.1175.

65

E. Holzschuh, L. Palermo, H. Stussi, and P. Wenk. The beta-spectrum of S-35 and search for the admixture of heavy neutrinos. Phys. Lett., B482:1–9, 2000. doi:10.1016/S0370-2693(00)00476-7.

66

A. V. Derbin, A. I. Egorov, S. V. Bakhlanov, and V. N. Muratova. Measurement of the Ca-45 beta spectrum in search of deviations from the theoretical shape. JETP Lett., 66:88–92, 1997. [Pisma Zh. Eksp. Teor. Fiz.66,81(1997)]. doi:10.1134/1.567508.

67

E. Holzschuh, W. Kundig, L. Palermo, H. Stussi, and P. Wenk. Search for heavy neutrinos in the beta spectrum of Ni-63. Phys. Lett., B451:247–255, 1999. doi:10.1016/S0370-2693(99)00200-2.

68

K. Schreckenbach, G. Colvin, and F. Von Feilitzsch. SEARCH FOR MIXING OF HEAVY NEUTRINOS IN THE BETA+ AND BETA- SPECTRA OF THE CU-64 DECAY. Phys. Lett., 129B:265–268, 1983. doi:10.1016/0370-2693(83)90858-4.

69

A. V. Derbin, I. S. Drachnev, I. S. Lomskaya, V. N. Muratova, N. V. Pilipenko, D. A. Semenov, L. M. Tukkhonen, E. V. Unzhakov, and A. Kh. Khusainov. Search for a neutrino with a mass of 0.01–1.0 mev in beta decays of 144ce–144pr nuclei. JETP Letters, 108(8):499–503, Oct 2018. URL: https://doi.org/10.1134/S0021364018200067, doi:10.1134/S0021364018200067.

70

M. Galeazzi, F. Fontanelli, F. Gatti, and S. Vitale. Limits on the existence of heavy neutrinos in the range 50–1000 ev from the study of the $^187\mathrm Re$ beta decay. Phys. Rev. Lett., 86:1978–1981, Mar 2001. URL: https://link.aps.org/doi/10.1103/PhysRevLett.86.1978, doi:10.1103/PhysRevLett.86.1978.

71

Susanne Mertens and others. A novel detector system for KATRIN to search for keV-scale sterile neutrinos. J. Phys., G46(6):065203, 2019. arXiv:1810.06711, doi:10.1088/1361-6471/ab12fe.

72

M. Drewes and others. A White Paper on keV Sterile Neutrino Dark Matter. JCAP, 1701(01):025, 2017. arXiv:1602.04816, doi:10.1088/1475-7516/2017/01/025.

73

A. I. Derbin, A. V. Chernyi, L. A. Popeko, V. N. Muratova, G. A. Shishkina, and S. I. Bakhlanov. Experiment on anti-neutrino scattering by electrons at a reactor of the Rovno nuclear power plant. JETP Lett., 57:768–772, 1993. [Pisma Zh. Eksp. Teor. Fiz.57,755(1993)].

74

C. Hagner, M. Altmann, F. v. Feilitzsch, L. Oberauer, Y. Declais, and E. Kajfasz. Experimental search for the neutrino decay $\ensuremath \nu _3$\ensuremath \rightarrow $\ensuremath \nu _\mathit j$+$\mathit e^+$+$\mathit e^\mathrm \ensuremath -$ and limits on neutrino mixing. Phys. Rev. D, 52:1343–1352, Aug 1995. URL: https://link.aps.org/doi/10.1103/PhysRevD.52.1343, doi:10.1103/PhysRevD.52.1343.

75

G. Bellini, J. Benziger, D. Bick, G. Bonfini, D. Bravo, M. Buizza Avanzini, B. Caccianiga, L. Cadonati, F. Calaprice, P. Cavalcante, A. Chavarria, A. Chepurnov, D. D’Angelo, S. Davini, A. Derbin, I. Drachnev, A. Empl, A. Etenko, K. Fomenko, D. Franco, C. Galbiati, S. Gazzana, C. Ghiano, M. Giammarchi, M. Göger-Neff, A. Goretti, L. Grandi, C. Hagner, E. Hungerford, Aldo Ianni, Andrea Ianni, V. Kobychev, D. Korablev, G. Korga, D. Kryn, M. Laubenstein, T. Lewke, E. Litvinovich, B. Loer, F. Lombardi, P. Lombardi, L. Ludhova, G. Lukyanchenko, I. Machulin, S. Manecki, W. Maneschg, G. Manuzio, Q. Meindl, E. Meroni, L. Miramonti, M. Misiaszek, P. Mosteiro, V. Muratova, L. Oberauer, M. Obolensky, F. Ortica, K. Otis, M. Pallavicini, L. Papp, L. Perasso, S. Perasso, A. Pocar, G. Ranucci, A. Razeto, A. Re, A. Romani, N. Rossi, R. Saldanha, C. Salvo, S. Schönert, H. Simgen, M. Skorokhvatov, O. Smirnov, A. Sotnikov, S. Sukhotin, Y. Suvorov, R. Tartaglia, G. Testera, D. Vignaud, R. B. Vogelaar, F. von Feilitzsch, J. Winter, M. Wojcik, A. Wright, M. Wurm, J. Xu, O. Zaimidoroga, S. Zavatarelli, and G. Zuzel. New limits on heavy sterile neutrino mixing in $^8\mathrm B$ decay obtained with the borexino detector. Phys. Rev. D, 88:072010, Oct 2013. URL: https://link.aps.org/doi/10.1103/PhysRevD.88.072010, doi:10.1103/PhysRevD.88.072010.

76

P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tortola, and J. W. F. Valle. Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett., B782:633–640, 2018. arXiv:1708.01186, doi:10.1016/j.physletb.2018.06.019.

77

A. Diaz, C. A. Argüelles, G. H. Collin, J. M. Conrad, and M. H. Shaevitz. Where Are We With Light Sterile Neutrinos? 2019. arXiv:1906.00045.

78

I Alekseev and others. Search for sterile neutrinos at the DANSS experiment. Phys. Lett., B787:56–63, 2018. arXiv:1804.04046, doi:10.1016/j.physletb.2018.10.038.

79

Y. J. Ko and others. Sterile Neutrino Search at the NEOS Experiment. Phys. Rev. Lett., 118(12):121802, 2017. arXiv:1610.05134, doi:10.1103/PhysRevLett.118.121802.

80

Feng Peng An and others. Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment. Phys. Rev. Lett., 117(15):151802, 2016. arXiv:1607.01174, doi:10.1103/PhysRevLett.117.151802.

81

Jeffrey M. Berryman. Constraining Sterile Neutrino Cosmology with Terrestrial Oscillation Experiments. Phys. Rev., D100(2):023540, 2019. arXiv:1905.03254, doi:10.1103/PhysRevD.100.023540.

82

A. Donini, P. Hernandez, J. Lopez-Pavon, M. Maltoni, and T. Schwetz. The minimal 3+2 neutrino model versus oscillation anomalies. JHEP, 1207:161, 2012. arXiv:1205.5230, doi:10.1007/JHEP07(2012)161.

83

James Barry, Werner Rodejohann, and He Zhang. Light Sterile Neutrinos: Models and Phenomenology. JHEP, 07:091, 2011. arXiv:1105.3911, doi:10.1007/JHEP07(2011)091.

84

P. S. B. Dev and Apostolos Pilaftsis. Light and Superlight Sterile Neutrinos in the Minimal Radiative Inverse Seesaw Model. Phys.Rev., D87(5):053007, 2013. arXiv:1212.3808, doi:10.1103/PhysRevD.87.053007.

85

Asmaa Abada, Giorgio Arcadi, Valerie Domcke, and Michele Lucente. Neutrino masses, leptogenesis and dark matter from small lepton number violation? JCAP, 1712(12):024, 2017. arXiv:1709.00415, doi:10.1088/1475-7516/2017/12/024.

86

J. Ashenfelter and others. First search for short-baseline neutrino oscillations at HFIR with PROSPECT. Phys. Rev. Lett., 121(25):251802, 2018. arXiv:1806.02784, doi:10.1103/PhysRevLett.121.251802.

87

Mona Dentler, Alvaro Hernandez-Cabezudo, Joachim Kopp, Pedro A. N. Machado, Michele Maltoni, Ivan Martinez-Soler, and Thomas Schwetz. Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos. JHEP, 08:010, 2018. arXiv:1803.10661, doi:10.1007/JHEP08(2018)010.

88

Patrick D. Bolton and Frank F. Deppisch. Probing nonstandard lepton number violating interactions in neutrino oscillations. Phys. Rev., D99(11):115011, 2019. arXiv:1903.06557, doi:10.1103/PhysRevD.99.115011.

89

A. Abada, C. Biggio, F. Bonnet, M. B. Gavela, and T. Hambye. Low energy effects of neutrino masses. JHEP, 12:061, 2007. arXiv:0707.4058, doi:10.1088/1126-6708/2007/12/061.

90

Enrique Fernandez-Martinez, Josu Hernandez-Garcia, and Jacobo Lopez-Pavon. Global constraints on heavy neutrino mixing. JHEP, 08:033, 2016. arXiv:1605.08774, doi:10.1007/JHEP08(2016)033.

91

Mattias Blennow, Pilar Coloma, Enrique Fernandez-Martinez, Josu Hernandez-Garcia, and Jacobo Lopez-Pavon. Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions. JHEP, 04:153, 2017. arXiv:1609.08637, doi:10.1007/JHEP04(2017)153.

92

F. del Aguila, J. de Blas, and M. Perez-Victoria. Effects of new leptons in Electroweak Precision Data. Phys.Rev., D78:013010, 2008. arXiv:0803.4008, doi:10.1103/PhysRevD.78.013010.

93

E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels, and J. Smirnov. Improving Electro-Weak Fits with TeV-scale Sterile Neutrinos. JHEP, 1305:081, 2013. arXiv:1302.1872, doi:10.1007/JHEP05(2013)081.

94

J. de Blas. Electroweak limits on physics beyond the Standard Model. EPJ Web Conf., 60:19008, 2013. arXiv:1307.6173, doi:10.1051/epjconf/20136019008.

95

S. Antusch and O. Fischer. Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities. JHEP, 1410:94, 2014. arXiv:1407.6607, doi:10.1007/JHEP10(2014)094.

96

Wojciech Flieger, Janusz Gluza, and Kamil Porwit. New limits on neutrino non-unitary mixings based on prescribed singular values. JHEP, 03:169, 2020. arXiv:1910.01233, doi:10.1007/JHEP03(2020)169.

97

Frank F. Deppisch. Lepton Flavour Violation and Flavour Symmetries. Fortsch. Phys., 61:622–644, 2013. arXiv:1206.5212, doi:10.1002/prop.201200126.

98

M. Tanabashi and others. Review of Particle Physics. Phys. Rev., D98(3):030001, 2018. doi:10.1103/PhysRevD.98.030001.

99

C. Dohmen and others. Test of lepton flavor conservation in mu - e conversion on titanium. Phys.Lett., B317:631–636, 1993. doi:10.1016/0370-2693(93)91383-X.

100

K. N. Abazajian and others. Light Sterile Neutrinos: A White Paper. 2012. arXiv:1204.5379.

101

Alexey Boyarsky, Oleg Ruchayskiy, and Mikhail Shaposhnikov. The Role of sterile neutrinos in cosmology and astrophysics. Ann. Rev. Nucl. Part. Sci., 59:191–214, 2009. arXiv:0901.0011, doi:10.1146/annurev.nucl.010909.083654.

102

Oleg Ruchayskiy and Artem Ivashko. Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis. JCAP, 1210:014, 2012. arXiv:1202.2841, doi:10.1088/1475-7516/2012/10/014.

103

F. Bezrukov, H. Hettmansperger, and M. Lindner. keV sterile neutrino Dark Matter in gauge extensions of the Standard Model. Phys. Rev., D81:085032, 2010. arXiv:0912.4415, doi:10.1103/PhysRevD.81.085032.

104

Miha Nemevsek, Goran Senjanovic, and Yue Zhang. Warm Dark Matter in Low Scale Left-Right Theory. JCAP, 1207:006, 2012. arXiv:1205.0844, doi:10.1088/1475-7516/2012/07/006.

105

Amr El-Zant, Shaaban Khalil, and Arunansu Sil. Warm dark matter in a $B-L$ inverse seesaw scenario. Phys. Rev., D91(3):035030, 2015. arXiv:1308.0836, doi:10.1103/PhysRevD.91.035030.

106

Anirban Biswas, Debasish Borah, and Dibyendu Nanda. keV Neutrino Dark Matter in a Fast Expanding Universe. Phys. Lett., B786:364–372, 2018. arXiv:1809.03519, doi:10.1016/j.physletb.2018.10.012.

107

Aaron C. Vincent, Enrique Fernandez Martinez, Pilar Hernández, Massimiliano Lattanzi, and Olga Mena. Revisiting cosmological bounds on sterile neutrinos. JCAP, 1504(04):006, 2015. arXiv:1408.1956, doi:10.1088/1475-7516/2015/04/006.

108

Asmaa Abada, Giorgio Arcadi, and Michele Lucente. Dark Matter in the minimal Inverse Seesaw mechanism. JCAP, 1410:001, 2014. arXiv:1406.6556, doi:10.1088/1475-7516/2014/10/001.

109

Kevork N. Abazajian. Sterile neutrinos in cosmology. Phys. Rept., 711-712:1–28, 2017. arXiv:1705.01837, doi:10.1016/j.physrep.2017.10.003.

110

Xiang-Dong Shi and George M. Fuller. A New dark matter candidate: Nonthermal sterile neutrinos. Phys. Rev. Lett., 82:2832–2835, 1999. arXiv:astro-ph/9810076, doi:10.1103/PhysRevLett.82.2832.

111

Scott Dodelson and Lawrence M. Widrow. Sterile-neutrinos as dark matter. Phys. Rev. Lett., 72:17–20, 1994. arXiv:hep-ph/9303287, doi:10.1103/PhysRevLett.72.17.

112

E. Bulbul and others. Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters. Astrophys.J., 789:13, 2014. arXiv:1402.2301, doi:10.1088/0004-637X/789/1/13.

113

A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, and J. Franse. Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster. Phys.Rev.Lett., 113(25):251301, 2014. arXiv:1402.4119, doi:10.1103/PhysRevLett.113.251301.

114

Alexey Boyarsky, Jeroen Franse, Dmytro Iakubovskyi, and Oleg Ruchayskiy. Checking the Dark Matter Origin of a 3.53 keV Line with the Milky Way Center. Phys. Rev. Lett., 115:161301, 2015. arXiv:1408.2503, doi:10.1103/PhysRevLett.115.161301.

115

Kenny C. Y. Ng, Brandon M. Roach, Kerstin Perez, John F. Beacom, Shunsaku Horiuchi, Roman Krivonos, and Daniel R. Wik. New Constraints on Sterile Neutrino Dark Matter from $NuSTAR$ M31 Observations. Phys. Rev., D99:083005, 2019. arXiv:1901.01262, doi:10.1103/PhysRevD.99.083005.

116

Brandon M. Roach, Kenny C.Y. Ng, Kerstin Perez, John F. Beacom, Shunsaku Horiuchi, Roman Krivonos, and Daniel R. Wik. NuSTAR Tests of Sterile-Neutrino Dark Matter: New Galactic Bulge Observations and Combined Impact. Phys. Rev. D, 101(10):103011, 2020. arXiv:1908.09037, doi:10.1103/PhysRevD.101.103011.

117

A. Neronov and D. Malyshev. Toward a full test of the νMSM sterile neutrino dark matter model with Athena. Phys. Rev., D93(6):063518, 2016. arXiv:1509.02758, doi:10.1103/PhysRevD.93.063518.

118

K. Hirata and others. Observation of a neutrino burst from the supernova sn1987a. Phys. Rev. Lett., 58:1490–1493, 1987.

119

R. M. Bionta and others. Observation of a neutrino burst in coincidence with supernova sn 1987a in the large magellanic cloud. Phys. Rev. Lett., 58:1494, 1987.

120

K. Kainulainen, J. Maalampi, and J. T. Peltoniemi. Inert neutrinos in supernovae. Nucl. Phys., B358:435–446, 1991. doi:10.1016/0550-3213(91)90354-Z.

121

X. Shi and G. Sigl. A Type II supernovae constraint on electron-neutrino - sterile-neutrino mixing. Phys. Lett., B323:360–366, 1994. [Erratum: Phys. Lett.B324,516(1994)]. arXiv:hep-ph/9312247, doi:10.1016/0370-2693(94)90233-X, 10.1016/0370-2693(94)91232-7.

122

H. Nunokawa, J. T. Peltoniemi, Anna Rossi, and J. W. F. Valle. Supernova bounds on resonant active sterile neutrino conversions. Phys. Rev., D56:1704–1713, 1997. arXiv:hep-ph/9702372, doi:10.1103/PhysRevD.56.1704.

123

Jun Hidaka and George M. Fuller. Dark matter sterile neutrinos in stellar collapse: Alteration of energy/lepton number transport and a mechanism for supernova explosion enhancement. Phys. Rev., D74:125015, 2006. arXiv:astro-ph/0609425, doi:10.1103/PhysRevD.74.125015.

124

Jun Hidaka and George M. Fuller. Sterile Neutrino-Enhanced Supernova Explosions. Phys. Rev., D76:083516, 2007. arXiv:0706.3886, doi:10.1103/PhysRevD.76.083516.

125

Irene Tamborra, Georg G. Raffelt, Lorenz Hudepohl, and Hans-Thomas Janka. Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows. JCAP, 1201:013, 2012. arXiv:1110.2104, doi:10.1088/1475-7516/2012/01/013.

126

MacKenzie L. Warren, Matthew Meixner, Grant Mathews, Jun Hidaka, and Toshitaka Kajino. Sterile neutrino oscillations in core-collapse supernovae. Phys. Rev., D90(10):103007, 2014. arXiv:1405.6101, doi:10.1103/PhysRevD.90.103007.

127

George M. Fuller, Alexander Kusenko, and Kalliopi Petraki. Heavy sterile neutrinos and supernova explosions. Phys. Lett., B670:281–284, 2009. arXiv:0806.4273, doi:10.1016/j.physletb.2008.11.016.

128

Georg G. Raffelt and Shun Zhou. Supernova bound on keV-mass sterile neutrinos reexamined. Phys. Rev., D83:093014, 2011. arXiv:1102.5124, doi:10.1103/PhysRevD.83.093014.

129

Carlos A. Argüelles, Vedran Brdar, and Joachim Kopp. Production of keV Sterile Neutrinos in Supernovae: New Constraints and Gamma Ray Observables. Phys. Rev., D99(4):043012, 2019. arXiv:1605.00654, doi:10.1103/PhysRevD.99.043012.

130

L. Oberauer, C. Hagner, G. Raffelt, and E. Rieger. Supernova bounds on neutrino radiative decays. Astropart. Phys., 1:377–386, 1993. doi:10.1016/0927-6505(93)90004-W.

131

S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, and E. M. Zavanin. Light sterile neutrinos. J. Phys., G43:033001, 2016. arXiv:1507.08204, doi:10.1088/0954-3899/43/3/033001.

132

Takehiko Asaka, Mikko Laine, and Mikhail Shaposhnikov. Lightest sterile neutrino abundance within the nuMSM. JHEP, 01:091, 2007. [Erratum: JHEP02,028(2015)]. arXiv:hep-ph/0612182, doi:10.1088/1126-6708/2007/01/091, 10.1007/JHEP02(2015)028.

133

A. D. Dolgov and F. L. Villante. BBN bounds on active sterile neutrino mixing. Nucl. Phys., B679:261–298, 2004. arXiv:hep-ph/0308083, doi:10.1016/j.nuclphysb.2003.11.031.

134

Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, and Yvonne Y. Y. Wong. Active-sterile neutrino oscillations in the early Universe with full collision terms. JCAP, 1508(08):019, 2015. arXiv:1506.05266, doi:10.1088/1475-7516/2015/08/019.

135

Alessandro Mirizzi, Gianpiero Mangano, Ninetta Saviano, Enrico Borriello, Carlo Giunti, Gennaro Miele, and Ofelia Pisanti. The strongest bounds on active-sterile neutrino mixing after Planck data. Phys. Lett., B726:8–14, 2013. arXiv:1303.5368, doi:10.1016/j.physletb.2013.08.015.

136

N. Aghanim and others. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641:A6, 2020. arXiv:1807.06209, doi:10.1051/0004-6361/201833910.

137

Sarah Bridle, Jack Elvin-Poole, Justin Evans, Susana Fernandez, Pawel Guzowski, and Stefan Soldner-Rembold. A Combined View of Sterile-Neutrino Constraints from CMB and Neutrino Oscillation Measurements. Phys. Lett., B764:322–327, 2017. arXiv:1607.00032, doi:10.1016/j.physletb.2016.11.050.

138

Marco Drewes and Björn Garbrecht. Combining experimental and cosmological constraints on heavy neutrinos. Nucl. Phys. B, 921:250–315, 2017. arXiv:1502.00477, doi:10.1016/j.nuclphysb.2017.05.001.

139

K. S. Babu and R. N. Mohapatra. Quantization of Electric Charge From Anomaly Constraints and a Majorana Neutrino. Phys.Rev., D41:271, 1990. doi:10.1103/PhysRevD.41.271.

140

K. S. Babu and R. N. Mohapatra. Is There a Connection Between Quantization of Electric Charge and a Majorana Neutrino? Phys.Rev.Lett., 63:938, 1989. doi:10.1103/PhysRevLett.63.938.

141

Robert Foot, Girish C. Joshi, H. Lew, and R.R. Volkas. Charge quantization in the standard model and some of its extensions. Mod.Phys.Lett., A5:2721–2732, 1990. doi:10.1142/S0217732390003176.

142

Marek Nowakowski and Apostolos Pilaftsis. A Note on charge quantization through anomaly cancellation. Phys.Rev., D48:259–263, 1993. arXiv:hep-ph/9304312, doi:10.1103/PhysRevD.48.259.

143

P. Minkowski. $\mu \to e \gamma $ at a Rate of One Out of 1-Billion Muon Decays? Phys.Lett., B67:421, 1977. doi:10.1016/0370-2693(77)90435-X.

144

Rabindra N. Mohapatra and R. E. Marshak. Local B-L Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations. Phys. Rev. Lett., 44:1316–1319, 1980. doi:10.1103/PhysRevLett.44.1316.

145

T. Yanagida. Horizontal Symmetry And Masses Of Neutrinos. Conf.Proc., C7902131:95, 1979.

146

Murray Gell-Mann, Pierre Ramond, and Richard Slansky. Complex Spinors and Unified Theories. Conf. Proc. C, 790927:315–321, 1979. arXiv:1306.4669.

147

J. Schechter and J.W.F. Valle. Neutrino Masses in SU(2) x U(1) Theories. Phys. Rev. D, 22:2227, 1980. doi:10.1103/PhysRevD.22.2227.

148

W. Buchmuller, C. Greub, and P. Minkowski. Neutrino masses, neutral vector bosons and the scale of B-L breaking. Phys.Lett., B267:395–399, 1991. doi:10.1016/0370-2693(91)90952-M.

149

Janusz Gluza. On teraelectronvolt Majorana neutrinos. Acta Phys.Polon., B33:1735–1746, 2002. arXiv:hep-ph/0201002.

150

A. Pilaftsis. Resonant tau-leptogenesis with observable lepton number violation. Phys.Rev.Lett., 95:081602, 2005. arXiv:hep-ph/0408103, doi:10.1103/PhysRevLett.95.081602.

151

Jörn Kersten and Alexei \relax Yu. Smirnov. Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation. Phys. Rev., D76:073005, 2007. arXiv:0705.3221, doi:10.1103/PhysRevD.76.073005.

152

Zhi-zhong Xing and Shun Zhou. Multiple seesaw mechanisms of neutrino masses at the TeV scale. Phys. Lett. B, 679:249–254, 2009. arXiv:0906.1757, doi:10.1016/j.physletb.2009.07.051.

153

M.B. Gavela, T. Hambye, D. Hernandez, and P. Hernandez. Minimal Flavour Seesaw Models. JHEP, 0909:038, 2009. arXiv:0906.1461, doi:10.1088/1126-6708/2009/09/038.

154

X.-G. He, S. Oh, J. Tandean, and C.-C. Wen. Large Mixing of Light and Heavy Neutrinos in Seesaw Models and the LHC. Phys.Rev., D80:073012, 2009. arXiv:0907.1607, doi:10.1103/PhysRevD.80.073012.

155

Rathin Adhikari and Amitava Raychaudhuri. Light neutrinos from massless texture and below TeV seesaw scale. Phys.Rev., D84:033002, 2011. arXiv:1004.5111, doi:10.1103/PhysRevD.84.033002.

156

A. Ibarra, E. Molinaro, and S. T. Petcov. Low Energy Signatures of the TeV Scale See-Saw Mechanism. Phys.Rev., D84:013005, 2011. arXiv:1103.6217, doi:10.1103/PhysRevD.84.013005.

157

F. F. Deppisch and A. Pilaftsis. Lepton Flavour Violation and theta(13) in Minimal Resonant Leptogenesis. Phys.Rev., D83:076007, 2011. arXiv:1012.1834, doi:10.1103/PhysRevD.83.076007.

158

A. Ibarra, E. Molinaro, and S. T. Petcov. TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and $(\beta \beta )_0\nu $-Decay. JHEP, 09:108, 2010. arXiv:1007.2378, doi:10.1007/JHEP09(2010)108.

159

M. Mitra, G. Senjanović, and F. Vissani. Neutrinoless Double Beta Decay and Heavy Sterile Neutrinos. Nucl.Phys., B856:26, 2012. arXiv:1108.0004, doi:10.1016/j.nuclphysb.2011.10.035.

160

M. Shaposhnikov. A Possible symmetry of the nuMSM. Nucl.Phys., B763:49, 2007. arXiv:hep-ph/0605047, doi:10.1016/j.nuclphysb.2006.11.003.

161

P. S. B. Dev, Chang-Hun Lee, and R. N. Mohapatra. Leptogenesis Constraints on the Mass of Right-handed Gauge Bosons. Phys.Rev., D90(9):095012, 2014. arXiv:1408.2820, doi:10.1103/PhysRevD.90.095012.

162

R. N. Mohapatra and J. W. F. Valle. Neutrino mass and baryon-number nonconservation in superstring models. Phys. Rev., D34:1642, 1986.

163

D. Wyler and L. Wolfenstein. Massless neutrinos in left-right symmetric models. Nucl. Phys., B218:205, 1983.

164

Eugeni K. Akhmedov, Manfred Lindner, Erhard Schnapka, and J. W. F. Valle. Left-right symmetry breaking in njl approach. Phys. Lett., B368:270–280, 1996. arXiv:hep-ph/9507275.

165

Evgeny K. Akhmedov, Manfred Lindner, Erhard Schnapka, and J. W. F. Valle. Dynamical left-right symmetry breaking. Phys. Rev., D53:2752–2780, 1996. arXiv:hep-ph/9509255.

166

M. Malinsky, J. C. Romao, and J. W. F. Valle. Novel supersymmetric so(10) seesaw mechanism. Phys. Rev. Lett., 95:161801, 2005.

167

Ernest Ma. Deciphering the Seesaw Nature of Neutrino Mass from Unitarity Violation. Mod.Phys.Lett., A24:2161–2165, 2009. arXiv:0904.1580, doi:10.1142/S0217732309031776.

168

P. S. B. Dev and A. Pilaftsis. Minimal Radiative Neutrino Mass Mechanism for Inverse Seesaw Models. Phys.Rev., D86:113001, 2012. arXiv:1209.4051, doi:10.1103/PhysRevD.86.113001.

169

A. Pilaftsis. Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields. Z.Phys., C55:275, 1992. arXiv:hep-ph/9901206, doi:10.1007/BF01482590.

170

G. t’Hooft. Lectures at Cargese Summer Inst. 1979. World Scientific, Singapore, 1982.

171

M. C. Gonzalez-Garcia and J. W. F. Valle. Fast decaying neutrinos and observable flavor violation in a new class of majoron models. Phys. Lett., B216:360, 1989.

172

J. Bernabeu, A. Santamaria, J. Vidal, A. Mendez, and J. W. F. Valle. Lepton Flavor Nonconservation at High-Energies in a Superstring Inspired Standard Model. Phys.Lett., B187:303, 1987. doi:10.1016/0370-2693(87)91100-2.

173

Ryan Barouki, Giacomo Marocco, and Subir Sarkar. Blast from the past II: Constraints on heavy neutral leptons from the BEBC WA66 beam dump experiment. SciPost Phys., 13:118, 2022. arXiv:2208.00416, doi:10.21468/SciPostPhys.13.5.118.

174

S. Friedrich and others. Limits on the Existence of sub-MeV Sterile Neutrinos from the Decay of $^7$Be in Superconducting Quantum Sensors. Phys. Rev. Lett., 126(2):021803, 2021. arXiv:2010.09603, doi:10.1103/PhysRevLett.126.021803.

175

Eduardo Cortina Gil and others. Search for heavy neutral lepton production in $K^+$ decays to positrons. Phys. Lett. B, 807:135599, 2020. arXiv:2005.09575, doi:10.1016/j.physletb.2020.135599.

176

K. Abe and others. Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande. Phys. Rev. D, 91:052019, 2015. arXiv:1410.2008, doi:10.1103/PhysRevD.91.052019.

177

Shun Zhou. Supernova Bounds on keV-mass Sterile Neutrinos. Adv. Ser. Direct. High Energy Phys., 25:243–252, 2015. arXiv:1504.02729, doi:10.1142/S0217751X15300331.

178

C. J. Martoff and others. HUNTER: precision massive-neutrino search based on a laser cooled atomic source. Quantum Sci. Technol., 6(2):024008, 2021. doi:10.1088/2058-9565/abdb9b.

179

W. Altmannshofer and others. PIONEER: Studies of Rare Pion Decays. 3 2022. arXiv:2203.01981.

180

S. Carbajal and A. M. Gago. Indirect search of Heavy Neutral Leptons using the DUNE Near Detector. 2 2022. arXiv:2202.09217.

181

Giulio Aielli and others. Expression of Interest for the CODEX-b Detector. 11 2019. arXiv:1911.00481.

182

Martin Hirsch and Zeren Simon Wang. Heavy neutral leptons at ANUBIS. Phys. Rev. D, 101(5):055034, 2020. arXiv:2001.04750, doi:10.1103/PhysRevD.101.055034.

183

Stefan Antusch, Eros Cazzato, and Oliver Fischer. Sterile neutrino searches via displaced vertices at LHCb. Phys. Lett. B, 774:114–118, 2017. arXiv:1706.05990, doi:10.1016/j.physletb.2017.09.057.

184

Marco Drewes and Jan Hajer. Heavy Neutrinos in displaced vertex searches at the LHC and HL-LHC. JHEP, 02:070, 2020. arXiv:1903.06100, doi:10.1007/JHEP02(2020)070.

185

Jia Liu, Zhen Liu, Lian-Tao Wang, and Xiao-Ping Wang. Seeking for sterile neutrinos with displaced leptons at the LHC. JHEP, 07:159, 2019. arXiv:1904.01020, doi:10.1007/JHEP07(2019)159.

186

J. Alimena and others. Searches for Long-Lived Particles at the Future FCC-ee. 3 2022. arXiv:2203.05502.

187

Sabyasachi Chakraborty, Manimala Mitra, and Sujay Shil. Fat Jet Signature of a Heavy Neutrino at Lepton Collider. Phys. Rev. D, 100(1):015012, 2019. arXiv:1810.08970, doi:10.1103/PhysRevD.100.015012.

188

Ariane Dekker, Ebo Peerbooms, Fabian Zimmer, Kenny C. Y. Ng, and Shin’ichiro Ando. Searches for sterile neutrinos and axionlike particles from the Galactic halo with eROSITA. Phys. Rev. D, 104(2):023021, 2021. arXiv:2103.13241, doi:10.1103/PhysRevD.104.023021.

189

F. Dydak and others. A Search for Muon-neutrino Oscillations in the Delta m**2 Range 0.3-eV**2 to 90-eV**2. Phys. Lett., 134B:281, 1984. doi:10.1016/0370-2693(84)90688-9.

190

Pilar Coloma, Pilar Hernández, Víctor Muñoz, and Ian M. Shoemaker. New constraints on Heavy Neutral Leptons from Super-Kamiokande data. Eur. Phys. J. C, 80(3):235, 2020. arXiv:1911.09129, doi:10.1140/epjc/s10052-020-7795-z.

191

P. Adamson and others. Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit. Phys. Rev. Lett., 122(9):091803, 2019. arXiv:1710.06488, doi:10.1103/PhysRevLett.122.091803.

192

M. Daum, B. Jost, R.M. Marshall, R.C. Minehart, W.A. Stephens, and others. Search for Admixtures of Massive Neutrinos in the Decay $\pi ^+ \to \mu ^+$ Neutrino. Phys.Rev., D36:2624, 1987. doi:10.1103/PhysRevD.36.2624.

193

Robert E. Shrock. General Theory of Weak Processes Involving Neutrinos. 2. Pure Leptonic Decays. Phys. Rev., D24:1275, 1981. doi:10.1103/PhysRevD.24.1275.

194

A. Aguilar-Arevalo and others. Search for heavy neutrinos in $\pi \to \mu \nu $ decay. Phys. Lett., B798:134980, 2019. arXiv:1904.03269, doi:10.1016/j.physletb.2019.134980.

195

R.S. Hayano, T. Taniguchi, T. Yamanaka, T. Tanimori, R. Enomoto, and others. HEAVY NEUTRINO SEARCH USING K(mu2) DECAY. Phys.Rev.Lett., 49:1305, 1982. doi:10.1103/PhysRevLett.49.1305.

196

T. Yamazaki, T. Ishikawa, Y. Akiba, M. Iwasaki, K.H. Tanaka, and others. Search for Heavy Neutrinos in Kaon Decay. Conf.Proc., C840719:I.262, 1984.

197

A.V. Artamonov and others. Search for heavy neutrinos in $K^+\to \mu ^+\nu _H$ decays. Phys.Rev., D91(5):052001, 2015. arXiv:1411.3963, doi:10.1103/PhysRevD.91.059903, 10.1103/PhysRevD.91.052001.

198

P. Abratenko and others. Search for Heavy Neutral Leptons Decaying into Muon-Pion Pairs in the MicroBooNE Detector. Phys. Rev. D, 101(5):052001, 2020. arXiv:1911.10545, doi:10.1103/PhysRevD.101.052001.

199

Kevin James Kelly and Pedro A. N. Machado. MicroBooNE experiment, NuMI absorber, and heavy neutral leptons. Phys. Rev. D, 104(5):055015, 2021. arXiv:2106.06548, doi:10.1103/PhysRevD.104.055015.

200

A. Vaitaitis and others. Search for neutral heavy leptons in a high-energy neutrino beam. Phys.Rev.Lett., 83:4943–4946, 1999. arXiv:hep-ex/9908011, doi:10.1103/PhysRevLett.83.4943.

201

Amanda M. Cooper-Sarkar and others. Search for Heavy Neutrino Decays in the BEBC Beam Dump Experiment. Phys.Lett., B160:207, 1985. doi:10.1016/0370-2693(85)91493-5.

202

E. Gallas and others. Search for neutral weakly interacting massive particles in the Fermilab Tevatron wide band neutrino beam. Phys.Rev., D52:6–14, 1995. doi:10.1103/PhysRevD.52.6.

203

Roel Aaij and others. Search for Majorana neutrinos in $B^- \to \pi ^+\mu ^-\mu ^-$ decays. Phys.Rev.Lett., 112(13):131802, 2014. arXiv:1401.5361, doi:10.1103/PhysRevLett.112.131802.

204

M. G. Aartsen and others. Searches for Sterile Neutrinos with the IceCube Detector. Phys. Rev. Lett., 117(7):071801, 2016. arXiv:1605.01990, doi:10.1103/PhysRevLett.117.071801.

205

M. G. Aartsen and others. Search for sterile neutrino mixing using three years of IceCube DeepCore data. Phys. Rev., D95(11):112002, 2017. arXiv:1702.05160, doi:10.1103/PhysRevD.95.112002.

206

P. Adamson and others. Search for active-sterile neutrino mixing using neutral-current interactions in NOvA. Phys. Rev., D96(7):072006, 2017. arXiv:1706.04592, doi:10.1103/PhysRevD.96.072006.

207

J. Orloff, Alexandre N. Rozanov, and C. Santoni. Limits on the mixing of tau neutrino to heavy neutrinos. Phys. Lett., B550:8–15, 2002. arXiv:hep-ph/0208075, doi:10.1016/S0370-2693(02)02769-7.

208

Iryna Boiarska, Alexey Boyarsky, Oleksii Mikulenko, and Maksym Ovchynnikov. Constraints from the CHARM experiment on heavy neutral leptons with tau mixing. Phys. Rev. D, 104(9):095019, 2021. arXiv:2107.14685, doi:10.1103/PhysRevD.104.095019.

209

P. Astier and others. Search for heavy neutrinos mixing with tau neutrinos. Phys.Lett., B506:27–38, 2001. arXiv:hep-ex/0101041, doi:10.1016/S0370-2693(01)00362-8.

210

G. Cvetič, Francis Halzen, C. S. Kim, and Sechul Oh. Anomalies in (semi)-leptonic $B$ decays $B^\pm \to \tau ^\pm \nu $, $B^\pm \to D \tau ^\pm \nu $ and $B^\pm \to D^* \tau ^\pm \nu $, and possible resolution with sterile neutrino. Chin. Phys., C41(11):113102, 2017. arXiv:1702.04335, doi:10.1088/1674-1137/41/11/113102.

211

Leonardo Mastrototaro, Alessandro Mirizzi, Pasquale Dario Serpico, and Arman Esmaili. Heavy sterile neutrino emission in core-collapse supernovae: Constraints and signatures. JCAP, 01:010, 2020. arXiv:1910.10249, doi:10.1088/1475-7516/2020/01/010.

212

Andrew Kobach and Sean Dobbs. Heavy Neutrinos and the Kinematics of Tau Decays. Phys. Rev. D, 91(5):053006, 2015. arXiv:1412.4785, doi:10.1103/PhysRevD.91.053006.

213

Kingman Cheung, Yi-Lun Chung, Hiroyuki Ishida, and Chih-Ting Lu. Sensitivity Reach on the Heavy Neutral Leptons and τ-Neutrino Mixing $|U_\tau N|^2 $ at the HL-LHC. Phys. Rev. D, 102(7):075038, 2020. arXiv:2004.11537, doi:10.1103/PhysRevD.102.075038.