UCL

Physics and Astronomy » High Energy Physics »

The Jolly Shrewdness

PBT Publications

UCL HEP PBT Detector Development

[1] Saad Shaikh, Sonia Escribano-Rodriguez, Raffaella Radogna, Laurent Kelleter, Connor Godden, Matthew Warren, Derek Attree, Ruben Saakyan, Linda Mortimer, Peter Corlett, Alison Warry, Andrew Gosling, Colin Baker, Andrew Poynter, Andrzej Kacperek, and Simon Jolly. Spread-out bragg peak measurements using a compact quality assurance range calorimeter at the clatterbridge cancer centre. Physics in Medicine & Biology, 69:115015, 2024. [ DOI ]
[2] L. Volz, L. Kelleter, S. Brons, L. Burigo, C. Graeff, N. I. Niebuhr, R. Radogna, S. Scheloske, C. Schoemers, S. Jolly, and J. Seco. Experimental exploration of a mixed helium/carbon beam for online treatment monitoring in carbon ion beam therapy. Physics in Medicine and Biology, 65, 2020. [ DOI ]
[3] Laurent Kelleter and Simon Jolly. A mathematical expression for depth-light curves of therapeutic proton beams in a quenching scintillator. Medical Physics, 47, 2020. [ DOI ]
[4] Laurent Kelleter, Raffaella Radogna, Lennart Volz, Derek Attree, Anastasia Basharina-Freshville, Joao Seco, Ruben Saakyan, and Simon Jolly. A scintillator-based range telescope for particle therapy. Physics in Medicine and Biology, 65, 2020. [ DOI ]

UCL HEP PBT Publications

[1] John D. Fenwick, Christopher Mayhew, Simon Jolly, Richard A. Amos, and Maria A. Hawkins. Navigating the straits: realizing the potential of proton flash through physics advances and further pre-clinical characterization. Frontiers in Oncology, Volume 14 - 2024, 2024. [ DOI | http ]
[2] Jacinta Yap, Javier Resta-Lopez, Andrzej Kacperek, Roland Schnuerer, Simon Jolly, Stewart Boogert, and Carsten Welsch. Beam characterisation studies of the 62 mev proton therapy beamline at the clatterbridge cancer centre. Physica Medica, 77, 2020. [ DOI ]
[3] Simon Jolly, Hywel Owen, Marco Schippers, and Carsten Welsch. Technical challenges for flash proton therapy. Physica Medica, 78, 2020. [ DOI ]
[4] Laurent Kelleter, Benjamin Zhen-Hong Tham, Ruben Saakyan, Jennifer Griffiths, Richard Amos, Simon Jolly, and Adam Gibson. Technical note: Simulation of dose buildup in proton pencil beams. Medical Physics, 46, 2019. [ DOI ]
[5] Hywel Owen, Antony Lomax, and Simon Jolly. Current and future accelerator technologies for charged particle therapy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 809, 2016. [ DOI ]

Useful PBT Publications

[1] Lukas Cornelius Wolter, Fabian Hennings, Jozef Bokor, Christian Richter, and Kristin Stuetzer. Validity of one-time phantomless patient-specific quality assurance in proton therapy with regard to the reproducibility of beam delivery. Medical Physics, 52:3173–3182, 2025. [ DOI ]
[2] Xiaoning Ding, James E. Younkin, Jiajian Shen, Martin Bues, and Wei Liu. A critical review of the practices of proton daily quality assurance programs. Therapeutic Radiology and Oncology, 5, 2021. [ DOI ]
[3] Sebastian Tattenberg, Thomas M. Madden, Bram L. Gorissen, Thomas Bortfeld, Katia Parodi, and Joost Verburg. Proton range uncertainty reduction benefits for skull base tumors in terms of normal tissue complication probability (ntcp) and healthy tissue doses. Medical Physics, 48, 2021. [ DOI ]
[4] Arturs Meijers, Gabriel Guterres Marmitt, Kelvin Ng Wei Siang, Arjen van der Schaaf, Antje C. Knopf, Johannes A. Langendijk, and Stefan Both. Feasibility of patient specific quality assurance for proton therapy based on independent dose calculation and predicted outcomes. Radiotherapy and Oncology, 150, 2020. [ DOI ]
[5] M. Matter, L. Nenoff, L. Marc, D. C. Weber, A. J. Lomax, and F. Albertini. Update on yesterday's dose-use of delivery log-files for daily adaptive proton therapy (dapt). Physics in Medicine and Biology, 65, 2020. [ DOI ]
[6] Antony John Lomax. Myths and realities of range uncertainty. The British Journal of Radiology, 93, 2020. [ DOI ]
[7] Carla Winterhalter, Gabriel Meier, David Oxley, Damien C. Weber, Antony J. Lomax, and Sairos Safai. Log file based monte carlo calculations for proton pencil beam scanning therapy. Physics in Medicine and Biology, 64, 2019. [ DOI ]
[8] Suresh Rana, Jaafar Bennouna, E. James Jebaseelan Samuel, and Alonso N. Gutierrez. Development and long-term stability of a comprehensive daily qa program for a modern pencil beam scanning (pbs) proton therapy delivery system. Journal of Applied Clinical Medical Physics, 20, 2019. [ DOI ]
[9] Bijan Arjomandy, Paige Taylor, Christopher Ainsley, Sairos Safai, Narayan Sahoo, Mark Pankuch, Jonathan B. Farr, Sung Yong Park, Eric Klein, Jacob Flanz, Ellen D. Yorke, David Followill, and Yuki Kase. Aapm task group 224: Comprehensive proton therapy machine quality assurance. Medical Physics, 46, 2019. [ DOI ]
[10] Xuemin Bai, Gino Lim, David Grosshans, Radhe Mohan, and Wenhua Cao. Robust optimization to reduce the impact of biological effect variation from physical uncertainties in intensity-modulated proton therapy. Physics in Medicine and Biology, 64, 2019. [ DOI ]
[11] M. Matter, L. Nenoff, G. Meier, D. C. Weber, A. J. Lomax, and F. Albertini. Alternatives to patient specific verification measurements in proton therapy: A comparative experimental study with intentional errors. Physics in Medicine and Biology, 63, 2018. [ DOI ]
[12] Moyed Miften, Arthur Olch, Dimitris Mihailidis, Jean Moran, Todd Pawlicki, Andrea Molineu, Harold Li, Krishni Wijesooriya, Jie Shi, Ping Xia, Nikos Papanikolaou, and Daniel A. Low. Tolerance limits and methodologies for imrt measurement-based verification qa: Recommendations of aapm task group no. 218. Medical Physics, 45, 2018. [ DOI ]
[13] O. Actis, D. Meer, S. König, D. C. Weber, and A. Mayor. A comprehensive and efficient daily quality assurance for pbs proton therapy. Physics in Medicine and Biology, 62, 2017. [ DOI ]
[14] Maria Francesca Belosi, Robert van der Meer, Paz Garcia de Acilu Laa, Alessandra Bolsi, Damien C. Weber, and Antony J. Lomax. Treatment log files as a tool to identify treatment plan sensitivity to inaccuracies in scanned proton beam delivery. Radiotherapy and Oncology, 125, 2017. [ DOI ]
[15] Maria F. Chan, Chin-Cheng Chen, Chengyu Shi, Jingdong Li, Xiaoli Tang, Xiang Li, and Dennis Mah. Patient-specific qa of spot-scanning proton beams using radiochromic film. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 06, 2017. [ DOI ]
[16] Nicola Bizzocchi, Francesco Fracchiolla, Marco Schwarz, and Carlo Algranati. A fast and reliable method for daily quality assurance in spot scanning proton therapy with a compact and inexpensive phantom. Medical Dosimetry, 42, 2017. [ DOI ]
[17] P. Trnková, A. Bolsi, F. Albertini, D. C. Weber, and A. J. Lomax. Factors influencing the performance of patient specific quality assurance for pencil beam scanning impt fields. Medical Physics, 43, 2016. [ DOI ]
[18] Harald Paganetti. Proton Therapy Physics. CRC Press, 2016. [ DOI ]
[19] X. Ronald Zhu, Yupeng Li, Dennis Mackin, Heng Li, Falk Poenisch, Andrew K. Lee, Anita Mahajan, Steven J. Frank, Michael T. Gillin, Narayan Sahoo, and Xiaodong Zhang. Towards effective and efficient patient-specific quality assurance for spot scanning proton therapy. Cancers, 7, 2015. [ DOI ]
[20] Wayne D. Newhauser and Rui Zhang. The physics of proton therapy. Physics in Medicine and Biology, 60, 2015. [ DOI ]
[21] Dennis Mackin, X. Ronald Zhu, Falk Poenisch, Heng Li, Narayan Sahoo, Matthew Kerr, Charles Holmes, Yupeng Li, MingFwu Lii, Richard Wu, Kazumichi Suzuki, Michael T. Gillin, Steven J. Frank, David Grosshans, and Xiaodong Zhang. Spot-scanning proton therapy patient-specific quality assurance: Results from 309 treatment plans. International Journal of Particle Therapy, 1, 2014. [ DOI ]
[22] Albin Fredriksson and Rasmus Bokrantz. A critical evaluation of worst case optimization methods for robust intensity-modulated proton therapy planning. Medical Physics, 41, 2014. [ DOI ]
[23] Heng Li, Narayan Sahoo, Falk Poenisch, Kazumichi Suzuki, Yupeng Li, Xiaoqiang Li, Xiaodong Zhang, Andrew K. Lee, Michael T. Gillin, and X. Ronald Zhu. Use of treatment log files in spot scanning proton therapy as part of patient-specific quality assurance. Medical Physics, 40, 2013. [ DOI ]
[24] Harald Paganetti. Range uncertainties in proton therapy and the role of monte carlo simulations. Physics in Medicine and Biology, 57, 2012. [ DOI ]
[25] J. Perl, J. Shin, J. Schümann, B. Faddegon, and H. Paganetti. Topas: An innovative proton monte carlo platform for research and clinical applications. Medical Physics, 39, 2012. [ DOI ]
[26] Christian P. Karger, Oliver Jäkel, Hugo Palmans, and Tatsuaki Kanai. Dosimetry for ion beam radiotherapy. Physics in Medicine and Biology, 55, 2010. [ DOI ]
[27] D. Pflugfelder, J. J. Wilkens, and U. Oelfke. Worst case optimization: A method to account for uncertainties in the optimization of intensity modulated proton therapy. Physics in Medicine and Biology, 53, 2008. [ DOI ]
[28] A. J. Lomax. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: The potential effects of inter-fraction and inter-field motions. Physics in Medicine and Biology, 53, 2008. [ DOI ]
[29] A. J. Lomax. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: The potential effects of calculational uncertainties. Physics in Medicine and Biology, 53, 2008. [ DOI ]